Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Efficient quantum dot light-emitting diodes with solution-processable molybdenum oxide as the anode buffer layer

Identifieur interne : 000271 ( Chine/Analysis ); précédent : 000270; suivant : 000272

Efficient quantum dot light-emitting diodes with solution-processable molybdenum oxide as the anode buffer layer

Auteurs : RBID : Pascal:13-0181322

Descripteurs français

English descriptors

Abstract

Quantum dot light-emitting diodes (QD-LEDs) are characterized by pure and saturated emission colors with narrow bandwidth. Optimization of the device interface is an effective way to achieve stable and high-performance QD-LEDs. Here we utilized solution-processed molybdenum oxide (MoOx) as the anode buffer layer on ITO to build efficient QD-LEDs. Using MoOx as the anode buffer layer provides the QD-LED with good Ohmic contact and a small charge transfer resistance. The device luminance is nearly independent of the thickness of the MoOx anode buffer layer. The QD-LEDs with a MoOx anode buffer layer exhibit a maximum luminance and luminous efficiency of 5230 cd m-2 and 0.67 cd A-1 for the yellow emission at 580 nm, and 7842 cd m-2 and 1.49 cd A-1 for the red emission at 610 nm, respectively.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0181322

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Efficient quantum dot light-emitting diodes with solution-processable molybdenum oxide as the anode buffer layer</title>
<author>
<name>SHAOJIAN HE</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University</s1>
<s2>Beijing 102206</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>SHUSHENG LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University</s1>
<s2>Beijing 102206</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>FUZHI WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University</s1>
<s2>Beijing 102206</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Andrew Y" uniqKey="Wang A">Andrew Y. Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Ocean NanoTech, LLC</s1>
<s2>Springdale, AR 72764</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Springdale, AR 72764</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JUN LIN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University</s1>
<s2>Beijing 102206</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tan, Zhan Ao" uniqKey="Tan Z">Zhan Ao Tan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University</s1>
<s2>Beijing 102206</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0181322</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0181322 INIST</idno>
<idno type="RBID">Pascal:13-0181322</idno>
<idno type="wicri:Area/Main/Corpus">000E05</idno>
<idno type="wicri:Area/Main/Repository">000E09</idno>
<idno type="wicri:Area/Chine/Extraction">000271</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0957-4484</idno>
<title level="j" type="abbreviated">Nanotechnology : (Bristol, Print)</title>
<title level="j" type="main">Nanotechnology : (Bristol. Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bandwidth</term>
<term>Buffer layer</term>
<term>Charge transfer</term>
<term>Interfaces</term>
<term>Light emitting diodes</term>
<term>Molybdenum oxide</term>
<term>Nanostructured materials</term>
<term>Ohmic contacts</term>
<term>Optimization</term>
<term>Optoelectronic devices</term>
<term>Quantum dots</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Point quantique</term>
<term>Nanomatériau</term>
<term>Diode électroluminescente</term>
<term>Dispositif optoélectronique</term>
<term>Oxyde de molybdène</term>
<term>Couche tampon</term>
<term>Largeur bande</term>
<term>Optimisation</term>
<term>Interface</term>
<term>Contact ohmique</term>
<term>Transfert charge</term>
<term>Substrat oxyde d'indium et de zinc</term>
<term>Substrat InSnO</term>
<term>8107T</term>
<term>8535B</term>
<term>8107B</term>
<term>8560J</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Quantum dot light-emitting diodes (QD-LEDs) are characterized by pure and saturated emission colors with narrow bandwidth. Optimization of the device interface is an effective way to achieve stable and high-performance QD-LEDs. Here we utilized solution-processed molybdenum oxide (MoO
<sub>x</sub>
) as the anode buffer layer on ITO to build efficient QD-LEDs. Using MoO
<sub>x</sub>
as the anode buffer layer provides the QD-LED with good Ohmic contact and a small charge transfer resistance. The device luminance is nearly independent of the thickness of the MoO
<sub>x</sub>
anode buffer layer. The QD-LEDs with a MoO
<sub>x</sub>
anode buffer layer exhibit a maximum luminance and luminous efficiency of 5230 cd m
<sup>-2</sup>
and 0.67 cd A
<sup>-1</sup>
for the yellow emission at 580 nm, and 7842 cd m
<sup>-2</sup>
and 1.49 cd A
<sup>-1</sup>
for the red emission at 610 nm, respectively.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4484</s0>
</fA01>
<fA03 i2="1">
<s0>Nanotechnology : (Bristol, Print)</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>17</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Efficient quantum dot light-emitting diodes with solution-processable molybdenum oxide as the anode buffer layer</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SHAOJIAN HE</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SHUSHENG LI</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FUZHI WANG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WANG (Andrew Y.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>JUN LIN</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>TAN (Zhan'ao)</s1>
</fA11>
<fA14 i1="01">
<s1>State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University</s1>
<s2>Beijing 102206</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Ocean NanoTech, LLC</s1>
<s2>Springdale, AR 72764</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s2>175201.1-175201.7</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22480</s2>
<s5>354000173361900030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>34 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0181322</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nanotechnology : (Bristol. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Quantum dot light-emitting diodes (QD-LEDs) are characterized by pure and saturated emission colors with narrow bandwidth. Optimization of the device interface is an effective way to achieve stable and high-performance QD-LEDs. Here we utilized solution-processed molybdenum oxide (MoO
<sub>x</sub>
) as the anode buffer layer on ITO to build efficient QD-LEDs. Using MoO
<sub>x</sub>
as the anode buffer layer provides the QD-LED with good Ohmic contact and a small charge transfer resistance. The device luminance is nearly independent of the thickness of the MoO
<sub>x</sub>
anode buffer layer. The QD-LEDs with a MoO
<sub>x</sub>
anode buffer layer exhibit a maximum luminance and luminous efficiency of 5230 cd m
<sup>-2</sup>
and 0.67 cd A
<sup>-1</sup>
for the yellow emission at 580 nm, and 7842 cd m
<sup>-2</sup>
and 1.49 cd A
<sup>-1</sup>
for the red emission at 610 nm, respectively.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07T</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Diode électroluminescente</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Light emitting diodes</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Dispositif optoélectronique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Optoelectronic devices</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Oxyde de molybdène</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Molybdenum oxide</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Molibdeno óxido</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Couche tampon</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Buffer layer</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Capa tampón</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Largeur bande</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Bandwidth</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Optimisation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Optimization</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Interface</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Interfaces</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Contact ohmique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Ohmic contacts</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Transfert charge</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Charge transfer</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Transferencia carga</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Substrat oxyde d'indium et de zinc</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Substrat InSnO</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>8107T</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>8535B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>8560J</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>161</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000271 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000271 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0181322
   |texte=   Efficient quantum dot light-emitting diodes with solution-processable molybdenum oxide as the anode buffer layer
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024